SAN vs NAS shared storage for a failover cluster
Evidian SafeKit
What is the simplest solution between a SAN vs a NAS shared storage for a failover cluster?
SAN shared storage or NAS iSCSI shared storage for a failover cluster
There are several elements that make this architecture complex to implement:
- on failover, switching the shared storage requires low level instructions which are storage manufacturer dependent,
- recovery procedure on the file system (FS) must be passed before restarting the application,
- if both file systems on both nodes access the same raw disk at the same time, the full file system will be corrupted,
- to avoid a double access, a quorum disk must be configured.
NAS SMB shared storage or NAS NFS shared storage for a failover cluster
- There are several elements that make this architecture simple to implement:
- on failover, switching the shared storage means only remounting the external file system,
- no recovery procedure on the file system must be passed before restarting the application,
- if both nodes access the same shared file system at the same time, the full file system will be not be corrupted,
- however, there is still the possibility of a double execution of the same application corrupting its data in the shared storage when nodes are isolated.
Real-time replication and failover with Evidian SafeKit
There are no such issues with SafeKit because its replication and failover solution does not require a shared storage.
However, if SafeKit must manage a shared storage:
- use a NAS SMB shared storage or a NAS NFS shared storage,
- put in the restart scripts the mount/umount of the external file system,
- configure the SafeKit split brain checker to avoid a double execution of the same application accessing the shared storage when nodes are isolated.
Step 1. Real-time replication
Server 1 (PRIM) runs the Windows or Linux application. Clients are connected to a virtual IP address. SafeKit replicates in real time modifications made inside files through the network.
The replication is synchronous with no data loss on failure contrary to asynchronous replication.
You just have to configure the names of directories to replicate in SafeKit. There are no pre-requisites on disk organization. Directories may be located in the system disk.
Step 2. Automatic failover
When Server 1 fails, Server 2 takes over. SafeKit switches the virtual IP address and restarts the Windows or Linux application automatically on Server 2.
The application finds the files replicated by SafeKit uptodate on Server 2. The application continues to run on Server 2 by locally modifying its files that are no longer replicated to Server 1.
The failover time is equal to the fault-detection time (30 seconds by default) plus the application start-up time.
Step 3. Automatic failback
Failback involves restarting Server 1 after fixing the problem that caused it to fail.
SafeKit automatically resynchronizes the files, updating only the files modified on Server 2 while Server 1 was halted.
Failback takes place without disturbing the Windows or Linux application, which can continue running on Server 2.
Step 4. Back to normal
After reintegration, the files are once again in mirror mode, as in step 1. The system is back in high-availability mode, with the Windows or Linux application running on Server 2 and SafeKit replicating file updates to Server 1.
If the administrator wishes the application to run on Server 1, he/she can execute a "swap" command either manually at an appropriate time, or automatically through configuration.
More information on power outage and network isolation in a cluster.
Redundancy at the application level
In this type of solution, only application data are replicated. And only the application is restared in case of failure.
With this solution, restart scripts must be written to restart the application.
We deliver application modules to implement redundancy at the application level (like the mirror module provided in the free trial below). They are preconfigured for well known applications and databases. You can customize them with your own services, data to replicate, application checkers. And you can combine application modules to build advanced multi-level architectures.
This solution is platform agnostic and works with applications inside physical machines, virtual machines, in the Cloud. Any hypervisor is supported (VMware, Hyper-V...).
Redundancy at the virtual machine level
In this type of solution, the full Virtual Machine (VM) is replicated (Application + OS). And the full VM is restarted in case of failure.
The advantage is that there is no restart scripts to write per application and no virtual IP address to define. If you do not know how the application works, this is the best solution.
This solution works with Windows/Hyper-V and Linux/KVM but not with VMware. This is an active/active solution with several virtual machines replicated and restarted between two nodes.
- Solution for a new application (no restart script to write): Windows/Hyper-V, Linux/KVM
More comparison between VM HA vs Application HA
Why a replication of a few Tera-bytes?
Resynchronization time after a failure (step 3)
- 1 Gb/s network ≈ 3 Hours for 1 Tera-bytes.
- 10 Gb/s network ≈ 1 Hour for 1 Tera-bytes or less depending on disk write performances.
Alternative
- For a large volume of data, use external shared storage.
- More expensive, more complex.
Why a replication < 1,000,000 files?
- Resynchronization time performance after a failure (step 3).
- Time to check each file between both nodes.
Alternative
- Put the many files to replicate in a virtual hard disk / virtual machine.
- Only the files representing the virtual hard disk / virtual machine will be replicated and resynchronized in this case.
Why a failover ≤ 32 replicated VMs?
- Each VM runs in an independent mirror module.
- Maximum of 32 mirror modules running on the same cluster.
Alternative
- Use an external shared storage and another VM clustering solution.
- More expensive, more complex.
Why a LAN/VLAN network between remote sites?
- Automatic failover of the virtual IP address with 2 nodes in the same subnet.
- Good bandwidth for resynchronization (step 3) and good latency for synchronous replication (typically a round-trip of less than 2ms).
Alternative
- Use a load balancer for the virtual IP address if the 2 nodes are in 2 subnets (supported by SafeKit, especially in the cloud).
- Use backup solutions with asynchronous replication for high latency network.
New application (real-time replication and failover)
- Windows (mirror.safe)
- Linux (mirror.safe)
New application (network load balancing and failover)
Database (real-time replication and failover)
- Microsoft SQL Server (sqlserver.safe)
- PostgreSQL (postgresql.safe)
- MySQL (mysql.safe)
- Oracle (oracle.safe)
- MariaDB (sqlserver.safe)
- Firebird (firebird.safe)
Web (network load balancing and failover)
- Apache (apache_farm.safe)
- IIS (iis_farm.safe)
- NGINX (farm.safe)
Full VM or container real-time replication and failover
- Hyper-V (hyperv.safe)
- KVM (kvm.safe)
- Docker (mirror.safe)
- Podman (mirror.safe)
- Kubernetes K3S (k3s.safe)
Amazon AWS
- AWS (mirror.safe)
- AWS (farm.safe)
Google GCP
- GCP (mirror.safe)
- GCP (farm.safe)
Microsoft Azure
- Azure (mirror.safe)
- Azure (farm.safe)
Other clouds
- All Cloud Solutions
- Generic (mirror.safe)
- Generic (farm.safe)
Physical security (real-time replication and failover)
- Milestone XProtect (milestone.safe)
- Nedap AEOS (nedap.safe)
- Genetec SQL Server (sqlserver.safe)
- Bosch AMS (hyperv.safe)
- Bosch BIS (hyperv.safe)
- Bosch BVMS (hyperv.safe)
- Hanwha Vision (hyperv.safe)
- Hanwha Wisenet (hyperv.safe)
Siemens (real-time replication and failover)
- Siemens Siveillance suite (hyperv.safe)
- Siemens Desigo CC (hyperv.safe)
- Siemens Siveillance VMS (SiveillanceVMS.safe)
- Siemens SiPass (hyperv.safe)
- Siemens SIPORT (hyperv.safe)
- Siemens SIMATIC PCS 7 (hyperv.safe)
- Siemens SIMATIC WinCC (hyperv.safe)
VM HA with the SafeKit Hyper-V or KVM module | Application HA with SafeKit application modules |
SafeKit inside 2 hypervisors: replication and failover of full VM | SafeKit inside 2 virtual or physical machines: replication and failover at application level |
Replicates more data (App+OS) | Replicates only application data |
Reboot of VM on hypervisor 2 if hypervisor 1 crashes Recovery time depending on the OS reboot VM checker and failover (Virtual Machine is unresponsive, has crashed, or stopped working) |
Quick recovery time with restart of App on OS2 if crash of server 1 Around 1 mn or less (see RTO/RPO here) Application checker and software failover |
Generic solution for any application / OS | Restart scripts to be written in application modules |
Works with Windows/Hyper-V and Linux/KVM but not with VMware | Platform agnostic, works with physical or virtual machines, cloud infrastructure and any hypervisor including VMware |
SafeKit with the Hyper-V module or the KVM module | Microsoft Hyper-V Cluster & VMware HA |
No shared disk - synchronous real-time replication instead with no data loss | Shared disk and specific extenal bay of disk |
Remote sites = no SAN for replication | Remote sites = replicated bays of disk across a SAN |
No specific IT skill to configure the system (with hyperv.safe and kvm.safe) | Specific IT skills to configure the system |
Note that the Hyper-V/SafeKit and KVM/SafeKit solutions are limited to replication and failover of 32 VMs. | Note that the Hyper-V built-in replication does not qualify as a high availability solution. This is because the replication is asynchronous, which can result in data loss during failures, and it lacks automatic failover and failback capabilities. |
Evidian SafeKit mirror cluster with real-time file replication and failover |
|
3 products in 1 More info > |
|
Very simple configuration More info > |
|
Synchronous replication More info > |
|
Fully automated failback More info > |
|
Replication of any type of data More info > |
|
File replication vs disk replication More info > |
|
File replication vs shared disk More info > |
|
Remote sites and virtual IP address More info > |
|
Quorum and split brain More info > |
|
Active/active cluster More info > |
|
Uniform high availability solution More info > |
|
RTO / RPO More info > |
|
Evidian SafeKit farm cluster with load balancing and failover |
|
No load balancer or dedicated proxy servers or special multicast Ethernet address More info > |
|
All clustering features More info > |
|
Remote sites and virtual IP address More info > |
|
Uniform high availability solution More info > |
|
Software clustering vs hardware clustering More info > |
|
|
|
Shared nothing vs a shared disk cluster More info > |
|
|
|
Application High Availability vs Full Virtual Machine High Availability More info > |
|
|
|
High availability vs fault tolerance More info > |
|
|
|
Synchronous replication vs asynchronous replication More info > |
|
|
|
Byte-level file replication vs block-level disk replication More info > |
|
|
|
Heartbeat, failover and quorum to avoid 2 master nodes More info > |
|
|
|
Virtual IP address primary/secondary, network load balancing, failover More info > |
|
|
|