Synchronous replication vs asynchronous replication
Evidian SafeKit
Data loss or not on application failover?
There is a significant difference between synchronous replication vs asynchronous replication. According the choice, you may have data loss on application failover.
Synchronous replication as implemented by the SafeKit software is essential for failover of transactional applications. With synchronous replication, all committed data on the disk of the primary server are on the disk of the secondary server. With asynchronous replication, committed data on the disk of the primary server can be lost in case of failure because not copied to the secondary server. There is also an alternative solution named semi-synchronous replication, with committed data on the secondary server but not necessary on its disk.
To help you to take the right decision if you have to choose between synchronous replication vs asynchronous replication, we explain now the technical mechanisms and the impact on application failover.
Synchronous replication
With synchronous replication as implemented by SafeKit, when a disk IO is performed by the application or by the file system cache on the primary server, SafeKit waits for the IO acknowledgement from the local disk and from the secondary server, before sending the IO acknowledgement to the application or to the file system cache. This mechanism is essential for failover of transactional applications when they commit their transactions.
Asynchronous replication
With asynchronous replication as implemented by Carbonite Double Take, the IOs are placed in a queue on the primary server but the primary server does not wait for the IO acknowledgments of the secondary server. So, all data that did not have time to be copied across the network on the secondary server is lost if the primary server fails. In particular, a transactional application loses committed transactions in case of failure.
Semi-synchronous replication
With semi-synchronous replication, SafeKit always waits for the acknowledgement of the two servers before sending the acknowledgement to the application or the file system cache. But in the semi-synchronous case, the secondary sends the acknowledgement to the primary upon receipt of the IO and writes to disk after. In the synchronous case, the secondary writes the IO to disk and then sends the acknowledgement to the primary.
Conclusion
With asynchronous replication, there is data loss on failure. Even with the semi-synchronous replication, there is data loss in the special case of a simultaneous double power outage of both servers, with inability to restart on the former primary server and the requirement to re-start on the secondary server. So be very careful when choosing synchronous replication vs asynchronous replication. Always prefer a synchronous or a semi-synchronous replication for a critical application.
Video: Synchronous replication vs asynchronous replication >
Step 1. Real-time replication
Server 1 (PRIM) runs the application. Clients are connected to a virtual IP address. SafeKit replicates in real time modifications made inside files through the network.
The replication is synchronous with no data loss on failure contrary to asynchronous replication.
You just have to configure the names of directories to replicate in SafeKit. There are no pre-requisites on disk organization. Directories may be located in the system disk.
Step 2. Automatic failover
When Server 1 fails, Server 2 takes over. SafeKit switches the virtual IP address and restarts the application automatically on Server 2.
The application finds the files replicated by SafeKit uptodate on Server 2. The application continues to run on Server 2 by locally modifying its files that are no longer replicated to Server 1.
The failover time is equal to the fault-detection time (30 seconds by default) plus the application start-up time.
Step 3. Automatic failback
Failback involves restarting Server 1 after fixing the problem that caused it to fail.
SafeKit automatically resynchronizes the files, updating only the files modified on Server 2 while Server 1 was halted.
Failback takes place without disturbing the application, which can continue running on Server 2.
Step 4. Back to normal
After reintegration, the files are once again in mirror mode, as in step 1. The system is back in high-availability mode, with the application running on Server 2 and SafeKit replicating file updates to Server 1.
If the administrator wishes the application to run on Server 1, he/she can execute a "swap" command either manually at an appropriate time, or automatically through configuration.
More information on power outage and network isolation in a cluster.
Why a replication of a few Tera-bytes?
Resynchronization time after a failure (step 3)
- 1 Gb/s network ≈ 3 Hours for 1 Tera-bytes.
- 10 Gb/s network ≈ 1 Hour for 1 Tera-bytes or less depending on disk write performances.
Alternative
- For a large volume of data, use external shared storage.
- More expensive, more complex.
Why a replication < 1,000,000 files?
- Resynchronization time performance after a failure (step 3).
- Time to check each file between both nodes.
Alternative
- Put the many files to replicate in a virtual hard disk / virtual machine.
- Only the files representing the virtual hard disk / virtual machine will be replicated and resynchronized in this case.
Why a failover ≤ 32 replicated VMs?
- Each VM runs in an independent mirror module.
- Maximum of 32 mirror modules running on the same cluster.
Alternative
- Use an external shared storage and another VM clustering solution.
- More expensive, more complex.
Why a LAN/VLAN network between remote sites?
- Automatic failover of the virtual IP address with 2 nodes in the same subnet.
- Good bandwidth for resynchronization (step 3) and good latency for synchronous replication (typically a round-trip of less than 2ms).
Alternative
- Use a load balancer for the virtual IP address if the 2 nodes are in 2 subnets (supported by SafeKit, especially in the cloud).
- Use backup solutions with asynchronous replication for high latency network.
VM HA with the SafeKit Hyper-V or KVM module | Application HA with SafeKit application modules |
SafeKit inside 2 hypervisors: replication and failover of full VM | SafeKit inside 2 virtual or physical machines: replication and failover at application level |
Replicates more data (App+OS) | Replicates only application data |
Reboot of VM on hypervisor 2 if hypervisor 1 crashes Recovery time depending on the OS reboot VM checker and failover (Virtual Machine is unresponsive, has crashed, or stopped working) |
Quick recovery time with restart of App on OS2 if crash of server 1 Around 1 mn or less (see RTO/RPO here) Application checker and software failover |
Generic solution for any application / OS | Restart scripts to be written in application modules |
Works with Windows/Hyper-V and Linux/KVM but not with VMware | Platform agnostic, works with physical or virtual machines, cloud infrastructure and any hypervisor including VMware |
SafeKit with the Hyper-V module or the KVM module | Microsoft Hyper-V Cluster & VMware HA |
No shared disk - synchronous real-time replication instead with no data loss | Shared disk and specific extenal bay of disk |
Remote sites = no SAN for replication | Remote sites = replicated bays of disk across a SAN |
No specific IT skill to configure the system (with hyperv.safe and kvm.safe) | Specific IT skills to configure the system |
Note that the Hyper-V/SafeKit and KVM/SafeKit solutions are limited to replication and failover of 32 VMs. | Note that the Hyper-V built-in replication does not qualify as a high availability solution. This is because the replication is asynchronous, which can result in data loss during failures, and it lacks automatic failover and failback capabilities. |
Evidian SafeKit mirror cluster with real-time file replication and failover |
|
3 products in 1 More info > |
|
Very simple configuration More info > |
|
Synchronous replication More info > |
|
Fully automated failback More info > |
|
Replication of any type of data More info > |
|
File replication vs disk replication More info > |
|
File replication vs shared disk More info > |
|
Remote sites and virtual IP address More info > |
|
Quorum and split brain More info > |
|
Active/active cluster More info > |
|
Uniform high availability solution More info > |
|
RTO / RPO More info > |
|
Evidian SafeKit farm cluster with load balancing and failover |
|
No load balancer or dedicated proxy servers or special multicast Ethernet address More info > |
|
All clustering features More info > |
|
Remote sites and virtual IP address More info > |
|
Uniform high availability solution More info > |
|
Software clustering vs hardware clustering More info > |
|
|
|
Shared nothing vs a shared disk cluster More info > |
|
|
|
Application High Availability vs Full Virtual Machine High Availability More info > |
|
|
|
High availability vs fault tolerance More info > |
|
|
|
Synchronous replication vs asynchronous replication More info > |
|
|
|
Byte-level file replication vs block-level disk replication More info > |
|
|
|
Heartbeat, failover and quorum to avoid 2 master nodes More info > |
|
|
|
Virtual IP address primary/secondary, network load balancing, failover More info > |
|
|
|
New application (real-time replication and failover)
New application (network load balancing and failover)
Database (real-time replication and failover)
- Microsoft SQL Server mirror
- PostgreSQL mirror
- MySQL mirror
- Oracle mirror
- MariaDB mirror
- Firebird mirror
Web (network load balancing and failover)
Full VM or container real-time replication and failover
Amazon AWS
Google GCP
Microsoft Azure
Other clouds
Physical security (real-time replication and failover)
Siemens (real-time replication and failover)
New application (real-time replication and failover)
- Windows (mirror.safe)
- Linux (mirror.safe)
New application (network load balancing and failover)
Database (real-time replication and failover)
- Microsoft SQL Server (sqlserver.safe)
- PostgreSQL (postgresql.safe)
- MySQL (mysql.safe)
- Oracle (oracle.safe)
- MariaDB (sqlserver.safe)
- Firebird (firebird.safe)
Web (network load balancing and failover)
- Apache (apache_farm.safe)
- IIS (iis_farm.safe)
- NGINX (farm.safe)
Full VM or container real-time replication and failover
- Hyper-V (hyperv.safe)
- KVM (kvm.safe)
- Docker (mirror.safe)
- Podman (mirror.safe)
- Kubernetes K3S (k3s.safe)
Amazon AWS
- AWS (mirror.safe)
- AWS (farm.safe)
Google GCP
- GCP (mirror.safe)
- GCP (farm.safe)
Microsoft Azure
- Azure (mirror.safe)
- Azure (farm.safe)
Other clouds
- All Cloud Solutions
- Generic (mirror.safe)
- Generic (farm.safe)
Physical security (real-time replication and failover)
- Milestone XProtect (milestone.safe)
- Nedap AEOS (nedap.safe)
- Genetec SQL Server (sqlserver.safe)
- Bosch AMS (hyperv.safe)
- Bosch BIS (hyperv.safe)
- Bosch BVMS (hyperv.safe)
- Hanwha Vision (hyperv.safe)
- Hanwha Wisenet (hyperv.safe)
Siemens (real-time replication and failover)
- Siemens Siveillance suite (hyperv.safe)
- Siemens Desigo CC (hyperv.safe)
- Siemens Siveillance VMS (SiveillanceVMS.safe)
- Siemens SiPass (hyperv.safe)
- Siemens SIPORT (hyperv.safe)
- Siemens SIMATIC PCS 7 (hyperv.safe)
- Siemens SIMATIC WinCC (hyperv.safe)